Prototyping Structural Description Using Decision Tree Learning Techniques
نویسنده
چکیده
Character recognition systems can contribute tremendously to the advancement of the automation process and can improve the interaction between man and machine in many applications, including office automation, cheque verification and a large variety of banking, business and data entry applications. The main theme of this paper is the automatic recognition of hand-printed Arabic characters using machine learning. Conventional methods have relied on handconstructed dictionaries which are tedious to construct and difficult to make tolerant to variation in writing styles. The advantages of machine learning are that it can generalize over the large degree of variation between writing styles and recognition rules can be constructed by example. The system was tested on a sample of handwritten characters from several individuals whose writing ranged from acceptable to poor in quality and the correct average recognition rate obtained using crossvalidation was 87.23%.
منابع مشابه
Graph Transformations for Model-based Testing
Model-based development uses modeling and simulation as essential means for specification, rapid prototyping, design, and realization of embedded systems. The classification-tree method complements model-based development with a formal approach for test case description and automation. This paper shows how “raw” classification trees are transformed into complete classification trees using an ex...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملClassification Using Decision Trees
Data mining term is mainly used for the specific set of six activities namely Classification, Estimation, Prediction, Affinity grouping or Association rules, Clustering, Description and Visualization. The first three tasks classification, estimation and prediction are all examples of directed data mining or supervised learning. Decision Tree (DT) is one of the most popular choices for learning ...
متن کاملClassification of Customer’s Credit Risk Using Ensemble learning (Case study: Sepah Bank)
Banks activities are associated with different kinds of risk such as cresit risk. Considering the limited financial resources of banks to provide facilities, assessment of the ability of repayment of bank customers before granting facilities is one of the most important challenges facing the banking system of the country. Accordingly, in this research, we tried to provide a model for determinin...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کامل